Upstream distal regulatory elements contact the Lmo2 promoter in mouse erythroid cells

PLoS One. 2012;7(12):e52880. doi: 10.1371/journal.pone.0052880. Epub 2012 Dec 21.

Abstract

The Lim domain only 2 (Lmo2) gene encodes a transcriptional cofactor critical for the development of hematopoietic stem cells. Several distal regulatory elements have been identified upstream of the Lmo2 gene in the human and mouse genomes that are capable of enhancing reporter gene expression in erythroid cells and may be responsible for the high level transcription of Lmo2 in the erythroid lineage. In this study we investigate how these elements regulate transcription of Lmo2 and whether or not they function cooperatively in the endogenous context. Chromosome conformation capture (3C) experiments show that chromatin-chromatin interactions exist between upstream regulatory elements and the Lmo2 promoter in erythroid cells but that these interactions are absent from kidney where Lmo2 is transcribed at twelve fold lower levels. Specifically, long range chromatin-chromatin interactions occur between the Lmo2 proximal promoter and two broad regions, 3-31 and 66-105 kb upstream of Lmo2, which we term the proximal and distal control regions for Lmo2 (pCR and dCR respectively). Each of these regions is bound by several transcription factors suggesting that multiple regulatory elements cooperate in regulating high level transcription of Lmo2 in erythroid cells. Binding of CTCF and cohesin which support chromatin loops at other loci were also found within the dCR and at the Lmo2 proximal promoter. Intergenic transcription occurs throughout the dCR in erythroid cells but not in kidney suggesting a role for these intergenic transcripts in regulating Lmo2, similar to the broad domain of intergenic transcription observed at the human β-globin locus control region. Our data supports a model in which the dCR functions through a chromatin looping mechanism to contact and enhance Lmo2 transcription specifically in erythroid cells. Furthermore, these chromatin loops are supported by the cohesin complex recruited to both CTCF and transcription factor bound regions.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing / genetics*
  • Adaptor Proteins, Signal Transducing / metabolism
  • Animals
  • Cells, Cultured
  • Erythroid Cells / metabolism*
  • Humans
  • LIM Domain Proteins / genetics*
  • LIM Domain Proteins / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Nucleic Acid Conformation
  • Organ Specificity / genetics
  • Promoter Regions, Genetic / genetics*
  • Transcription, Genetic
  • Transfection

Substances

  • Adaptor Proteins, Signal Transducing
  • LIM Domain Proteins
  • Lmo2 protein, mouse

Grants and funding

This study was supported by the Natural Sciences and Engineering Research Council of Canada (Discovery Grant held by JAM). AB was funded by the Department of Cell and Systems Biology and the Department of Economics, University of Toronto. CYC was supported in part by an Ontario Graduate Scholarship. The ENCODE project is funded by the National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.