Nanoarchitectured Co-Cr-Mo orthopedic implant alloys: nitrogen-enhanced nanostructural evolution and its effect on phase stability

Acta Biomater. 2013 Apr;9(4):6259-67. doi: 10.1016/j.actbio.2012.12.013. Epub 2012 Dec 16.

Abstract

Our previous studies indicate that nitrogen addition suppresses the athermal γ (face-centered cubic, fcc)→ε (hexagonal close-packed, hcp) martensitic transformation of biomedical Co-Cr-Mo alloys and ultimately offers large elongation to failure while maintaining high strength. In the present study, structural evolution and dislocation slip as an elementary process in the martensitic transformation in Co-Cr-Mo alloys were investigated to reveal the origin of their enhanced γ phase stability due to nitrogen addition. Alloy specimens with and without nitrogen addition were prepared. The N-doped alloys had a single-phase γ matrix, whereas the N-free alloys had a γ/ε duplex microstructure. Irrespective of the nitrogen content, dislocations frequently dissociated into Shockley partial dislocations with stacking faults. This indicates that nitrogen has little effect on the stability of the γ phase, which is also predicted by thermodynamic calculations. We discovered short-range ordering (SRO) or nanoscale Cr2N precipitates in the γ matrix of the N-containing alloy specimens, and it was revealed that both SRO and nanoprecipitates function as obstacles to the glide of partial dislocations and consequently significantly affect the kinetics of the γ→ε martensitic transformation. Since the formation of ε martensite plays a crucial role in plastic deformation and wear behavior, the developed nanostructural modification associated with nitrogen addition must be a promising strategy for highly durable orthopedic implants.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alloys / chemistry*
  • Biocompatible Materials / chemical synthesis*
  • Crystallization / methods*
  • Macromolecular Substances / chemistry
  • Materials Testing
  • Molecular Conformation
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure*
  • Nitrogen / chemistry*
  • Particle Size
  • Phase Transition
  • Prostheses and Implants
  • Surface Properties
  • Vitallium / chemical synthesis*

Substances

  • Alloys
  • Biocompatible Materials
  • Macromolecular Substances
  • Vitallium
  • Nitrogen