The challenges of cellular compartmentalization in plant metabolic engineering

Curr Opin Biotechnol. 2013 Apr;24(2):239-46. doi: 10.1016/j.copbio.2012.11.006. Epub 2012 Dec 12.

Abstract

The complex metabolic networks in plants are highly compartmentalized and biochemical steps of a single pathway can take place in multiple subcellular locations. Our knowledge regarding reactions and precursor compounds in the various cellular compartments has increased in recent years due to innovations in tracking the spatial distribution of proteins and metabolites. Nevertheless, to date only few studies have integrated subcellular localization criteria in metabolic engineering attempts. Here, we highlight the crucial factors for subcellular-localization-based strategies in plant metabolic engineering including substrate availability, enzyme targeting, the role of transporters, and multigene transfer approaches. The availability of compartmentalized metabolic network models for plants in the near future will greatly advance the integration of localization constraints in metabolic engineering experiments and aid in predicting their outcomes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Cell Compartmentation*
  • Metabolic Engineering*
  • Metabolic Networks and Pathways
  • Metabolomics
  • Organelles / metabolism*
  • Plant Cells / enzymology
  • Plant Cells / metabolism
  • Plant Proteins / metabolism
  • Plants / enzymology
  • Plants / genetics
  • Plants / metabolism*
  • Synthetic Biology

Substances

  • Plant Proteins