Use of time lapse microscopy to visualize anoxia-induced suspended animation in C. elegans embryos

J Vis Exp. 2012 Dec 3:(70):e4319. doi: 10.3791/4319.

Abstract

Caenorhabdits elegans has been used extensively in the study of stress resistance, which is facilitated by the transparency of the adult and embryo stages as well as by the availability of genetic mutants and transgenic strains expressing a myriad of fusion proteins(1-4). In addition, dynamic processes such as cell division can be viewed using fluorescently labeled reporter proteins. The study of mitosis can be facilitated through the use of time-lapse experiments in various systems including intact organisms; thus the early C. elegans embryo is well suited for this study. Presented here is a technique by which in vivo imaging of sub-cellular structures in response to anoxic (99.999% N2; <2 ppm O2) stress is possible using a simple gas flow through setup on a high-powered microscope. A microincubation chamber is used in conjunction with nitrogen gas flow through and a spinning disc confocal microscope to create a controlled environment in which animals can be imaged in vivo. Using GFP-tagged gamma tubulin and histone, the dynamics and arrest of cell division can be monitored before, during and after exposure to an oxygen-deprived environment. The results of this technique are high resolution, detailed videos and images of cellular structures within blastomeres of embryos exposed to oxygen deprivation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Video-Audio Media

MeSH terms

  • Animals
  • Animals, Genetically Modified
  • Caenorhabditis elegans / embryology
  • Caenorhabditis elegans / genetics
  • Caenorhabditis elegans / metabolism*
  • Hypoxia / metabolism
  • Hypoxia / pathology*
  • Image Processing, Computer-Assisted
  • Microscopy, Confocal / instrumentation
  • Microscopy, Confocal / methods*
  • Microscopy, Video / instrumentation
  • Microscopy, Video / methods*