Self-assembling surfaces of blood-contacting materials

J Mater Sci Mater Med. 2013 Mar;24(3):725-33. doi: 10.1007/s10856-012-4824-y. Epub 2012 Dec 11.

Abstract

The optimal scaffold should have the self-organising property of activating the appropriate tissues surrounding the re-population. The anti-bacterial property of the coating was obtained through surface pre-treatment with coatings a few nanometres in thickness deposited using vapour-based methods. The coating's anti-thrombogenic properties were obtained by the selective mobilisation of cellular functions, which was controlled by the structure of porous coatings deposited on bulk substrates and by the small biological agent-L-arginyl-glycyl-L-aspartic acid (tripeptide Arg-Gly-Asp-RGD) protein domains. Two tests simulating arterial flow conditions were performed: Impact-R, for examining platelet function under near physiological conditions, and radial flow chamber, a cell detachment test that gives an overview of cell behaviour and shear stresses that could appear between the cell and the biomaterial. Cell structures were analysed using laser scanning confocal microscopy and flow cytometry. The performed in vitro dynamic test for the haemo-compatibility revealed the most promising surface functionalization was based on porous extracellular-like structure covered with endothelium cells simultaneously. The antibacterial function was achieved by the appropriate phase composition of the coating used for the pre-treatment stage. The coating for the pre-treatment was selected on the basis of the blood-material and bacteria-material interaction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biocompatible Materials*
  • Blood*
  • Cells, Cultured
  • Flow Cytometry
  • Humans
  • Microscopy, Confocal
  • Microscopy, Electron, Transmission
  • Oligopeptides
  • Tissue Scaffolds*

Substances

  • Biocompatible Materials
  • Oligopeptides
  • arginyl-glycyl-aspartic acid