Self-terminating growth of platinum films by electrochemical deposition

Science. 2012 Dec 7;338(6112):1327-30. doi: 10.1126/science.1228925.

Abstract

A self-terminating rapid electrodeposition process for controlled growth of platinum (Pt) monolayer films from a K(2)PtCl(4)-NaCl electrolyte has been developed that is tantamount to wet atomic layer deposition. Despite the deposition overpotential being in excess of 1 volt, Pt deposition was quenched at potentials just negative of proton reduction by an alteration of the double-layer structure induced by a saturated surface coverage of underpotential deposited H (H(upd)). The surface was reactivated for further Pt deposition by stepping the potential to more positive values, where H(upd) is oxidized and fresh sites for the adsorption of PtCl(4)(2-) become available. Periodic pulsing of the potential enables sequential deposition of two-dimensional Pt layers to fabricate films of desired thickness, relevant to a range of advanced technologies.

Publication types

  • Research Support, American Recovery and Reinvestment Act
  • Research Support, U.S. Gov't, Non-P.H.S.