Effect of Co doping on the in-plane anisotropy in the optical spectrum of underdoped Ba(Fe(1-x)Co(x))2As2

Phys Rev Lett. 2012 Nov 21;109(21):217003. doi: 10.1103/PhysRevLett.109.217003. Epub 2012 Nov 20.

Abstract

We investigate the anisotropy in the in-plane optical spectra of detwinned Ba(Fe(1-x)Co(x))(2)As(2). The optical conductivity spectrum of BaFe(2)As(2) shows appreciable anisotropy in the magnetostructural ordered phase, whereas the dc (ω = 0) resistivity is nearly isotropic at low temperatures. Upon Co doping, the resistivity becomes highly anisotropic, while the finite-energy intrinsic anisotropy is suppressed. It is found that anisotropy in resistivity arises from anisotropic impurity scattering due to the presence of doped Co atoms, and it is extrinsic in origin. The intensity of a specific optical phonon mode is also found to show striking anisotropy in the ordered phase. The anisotropy induced by the Co impurity and that observed in the optical phonon mode are hallmarks of the highly polarizable electronic state in the ordered phase.