Direct evidence for intrarenal chymase-dependent angiotensin II formation on the diabetic renal microvasculature

Hypertension. 2013 Feb;61(2):465-71. doi: 10.1161/HYPERTENSIONAHA.111.202424. Epub 2012 Dec 3.

Abstract

Our previous work supports a major role for angiotensin-converting enzyme (ACE)-independent intrarenal angiotensin (ANG) II formation on microvascular function in type 2 diabetes mellitus. We tested the hypothesis that there is a switch from renal vascular ACE-dependent to chymase-dependent ANGII formation in diabetes mellitus. The in vitro juxtamedullary afferent arteriole (AA) contractile responses to the intrarenal conversion of the ACE-specific, chymase-resistant ANGI peptide ([Pro(10)]ANGI) to ANGII were significantly reduced in kidneys of diabetic (db/db) compared with control (db/m) mice. AA responses to the intrarenal conversion of the chymase-specific, ACE-resistant ANGI peptide ([Pro(11), D-Ala(12)]ANGI) to ANGII were significantly enhanced in kidneys of diabetic compared with control mice. AA diameters were significantly reduced by 9 ± 2, 15 ± 3, and 24 ± 3% of baseline in diabetic kidneys in response to 10, 100, and 1000 nmol/L [Pro(11), D-Ala(12)]ANGI, respectively, and the responses were significantly attenuated by angiotensin type 1 receptor or chymase-specific (JNJ-18054478) inhibition. [Pro(11), D-Ala(12)]ANGI did not produce a significant AA vasoconstriction in control kidneys. Chymase inhibition significantly attenuated ANGI-induced AA vasoconstriction in diabetic, but not control kidneys. Renal vascular mouse mast cell protease-4 or chymase/β-actin mRNA expression was significantly augmented by 5.1 ± 1.4 fold; while ACE/β-actin mRNA expression was significantly attenuated by 0.42 ± 0.08 fold in diabetic compared with control tissues. In summary, intrarenal formation of ANGII occurs primarily via ACE in the control, but via chymase in the diabetic vasculature. In conclusion, chymase-dependent mechanisms may contribute to the progression of diabetic kidney disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiotensin II / biosynthesis*
  • Angiotensin II Type 1 Receptor Blockers / pharmacology
  • Animals
  • Benzimidazoles / pharmacology
  • Biphenyl Compounds
  • Chymases / metabolism*
  • Diabetes Mellitus, Type 2 / metabolism*
  • Kidney / blood supply*
  • Kidney / drug effects
  • Kidney / metabolism
  • Male
  • Mice
  • Microvessels / drug effects
  • Microvessels / metabolism*
  • Peptidyl-Dipeptidase A / metabolism
  • Tetrazoles / pharmacology

Substances

  • Angiotensin II Type 1 Receptor Blockers
  • Benzimidazoles
  • Biphenyl Compounds
  • Tetrazoles
  • Angiotensin II
  • Peptidyl-Dipeptidase A
  • Chymases
  • candesartan