How to handle speciose clades? Mass taxon-sampling as a strategy towards illuminating the natural history of Campanula (Campanuloideae)

PLoS One. 2012;7(11):e50076. doi: 10.1371/journal.pone.0050076. Epub 2012 Nov 28.

Abstract

Background: Speciose clades usually harbor species with a broad spectrum of adaptive strategies and complex distribution patterns, and thus constitute ideal systems to disentangle biotic and abiotic causes underlying species diversification. The delimitation of such study systems to test evolutionary hypotheses is difficult because they often rely on artificial genus concepts as starting points. One of the most prominent examples is the bellflower genus Campanula with some 420 species, but up to 600 species when including all lineages to which Campanula is paraphyletic. We generated a large alignment of petD group II intron sequences to include more than 70% of described species as a reference. By comparison with partial data sets we could then assess the impact of selective taxon sampling strategies on phylogenetic reconstruction and subsequent evolutionary conclusions.

Methodology/principal findings: Phylogenetic analyses based on maximum parsimony (PAUP, PRAP), Bayesian inference (MrBayes), and maximum likelihood (RAxML) were first carried out on the large reference data set (D680). Parameters including tree topology, branch support, and age estimates, were then compared to those obtained from smaller data sets resulting from "classification-guided" (D088) and "phylogeny-guided sampling" (D101). Analyses of D088 failed to fully recover the phylogenetic diversity in Campanula, whereas D101 inferred significantly different branch support and age estimates.

Conclusions/significance: A short genomic region with high phylogenetic utility allowed us to easily generate a comprehensive phylogenetic framework for the speciose Campanula clade. Our approach recovered 17 well-supported and circumscribed sub-lineages. Knowing these will be instrumental for developing more specific evolutionary hypotheses and guide future research, we highlight the predictive value of a mass taxon-sampling strategy as a first essential step towards illuminating the detailed evolutionary history of diverse clades.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bayes Theorem
  • Campanulaceae / genetics*
  • Classification / methods*
  • DNA, Plant / genetics
  • Evolution, Molecular
  • Introns
  • Likelihood Functions
  • Models, Biological
  • Models, Genetic
  • Molecular Biology
  • Phylogeny
  • Polymerase Chain Reaction / methods

Substances

  • DNA, Plant

Grants and funding

The authors thank the Mattfeld-Quadbeck foundation (Guilhem Mansion), the Verein der Freunde des BGBM (lab facilities), and the German Research Foundation (DFG, via the Open Access Publication Fund of the Free University of Berlin). Part of the field collection was supported by the VolkswagenStiftung through the project “Developing Tools for Conserving the Plant Diversity of the Transcaucasus”. The work of Nico Cellinese, Evgeny Mavrodiev, and Andrew Crowl was funded by a grant from the National Science Foundation (DEB-0953677). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.