Endocranial anatomy of the charadriiformes: sensory system variation and the evolution of wing-propelled diving

PLoS One. 2012;7(11):e49584. doi: 10.1371/journal.pone.0049584. Epub 2012 Nov 27.

Abstract

Just as skeletal characteristics provide clues regarding behavior of extinct vertebrates, phylogenetically-informed evaluation of endocranial morphology facilitates comparisons among extinct taxa and extant taxa with known behavioral characteristics. Previous research has established that endocranial morphology varies across Aves; however, variation of those systems among closely related species remains largely unexplored. The Charadriiformes (shorebirds and allies) are an ecologically diverse clade with a comparatively rich fossil record, and therefore, are well suited for investigating interspecies variation, and potential links between endocranial morphology, phylogeny, ecology and other life history attributes. Endocranial endocasts were rendered from high resolution X-ray computed tomography data for 17 charadriiforms (15 extant and two flightless extinct species). Evaluation of endocranial character state changes on a phylogeny for Charadriiformes resulted in identification of characters that vary in taxa with distinct feeding and locomotor ecologies. In comparison with all other charadriiforms, stem and crown clade wing-propelled diving Pan-Alcidae displayed compressed semicircular canals, and indistinct occipital sinuses and cerebellar fissures. Flightless wing-propelled divers have relatively smaller brains for their body mass and smaller optic lobes than volant pan-alcids. Observed differences between volant and flightless wing-propelled sister taxa are striking given that flightless pan-alcids continue to rely on the flight stroke for underwater propulsion. Additionally, the brain of the Black Skimmer Rynchops niger, a taxon with a unique feeding ecology that involves continuous forward aerial motion and touch-based prey detection used both at day and night, is discovered to be unlike that of any other sampled charadriiform in having an extremely large wulst as well as a small optic lobe and distinct occipital sinus. Notably, the differences between the Black Skimmer and other charadriiforms are more pronounced than between wing-propelled divers and other charadriiforms. Finally, aspects of endosseous labyrinth morphology are remarkably similar between divers and non-divers, and may deserve further evaluation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Behavior, Animal
  • Biological Evolution
  • Brain / anatomy & histology*
  • Brain / physiology
  • Charadriiformes / anatomy & histology*
  • Charadriiformes / classification
  • Charadriiformes / physiology
  • Cluster Analysis
  • Diving
  • Ear, Inner / anatomy & histology
  • Sensation / physiology
  • Tomography, X-Ray Computed
  • Wings, Animal

Grants and funding

Funding for this research was provided by National Science Foundation Grant “Collaborative research: Wings to flippers–Phylogenetics, character acquisition, and feather biomechanics in the evolution of wing-propelled diving” (NSF DEB 0949897) and The Jackson School of Geosciences, The University of Texas at Austin. N.A.S. also gratefully acknowledges additional support from a National Evolutionary Synthesis Center Postdoctoral Fellowship (NESCent; NSF EF-0905606). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.