KF and CsF recognition and extraction by a calix[4]crown-5 strapped calix[4]pyrrole multitopic receptor

J Am Chem Soc. 2012 Dec 26;134(51):20837-43. doi: 10.1021/ja310673p. Epub 2012 Dec 13.

Abstract

On the basis of (1)H NMR spectroscopic analyses and single crystal X-ray crystal structural data, the ion-pair receptor 1, bearing a calix[4]pyrrole for anion binding and calix[4]arene crown-5 for cation recognition, was found to act as a receptor for both CsF and KF ion-pairs. Both substrates are bound strongly but via different binding modes and with different complexation dynamics. Specifically, exposure to KF in 10% CD(3)OD in CDCl(3) leads first to complexation of the K(+) cation by the calix[4]arene crown-5 moiety. As the relative concentration of KF increases, then the calix[4]pyrrole subunit binds the F(-) anion. Once bound, the K(+) cation and the F(-) anion give rise to a stable 1:1 ion-pair complex that generally precipitates from solution. In contrast to what is seen with KF, the CsF ion-pair interacts with receptor 1 in two different modes in 10% CD(3)OD in CDCl(3). In the first of these, the Cs(+) cation interacts with the calix[4]arene crown-5 ring weakly. In the second interaction mode, which is thermodynamically more stable, the Cs(+) cation and the counteranion, F(-), are simultaneously bound to the receptor framework. Further proof that system 1 acts as a viable ion-pair receptor came from the finding that receptor 1 could extract KF from an aqueous phase into nitrobenzene, overcoming the high hydration energies of the K(+) and F(-) ions. It was more effective in this regard than a 1:1 mixture of the constituent cation and anion receptors (4 and 5).