Fiber-based tissue engineering: Progress, challenges, and opportunities

Biotechnol Adv. 2013 Sep-Oct;31(5):669-87. doi: 10.1016/j.biotechadv.2012.11.007. Epub 2012 Nov 27.

Abstract

Tissue engineering aims to improve the function of diseased or damaged organs by creating biological substitutes. To fabricate a functional tissue, the engineered construct should mimic the physiological environment including its structural, topographical, and mechanical properties. Moreover, the construct should facilitate nutrients and oxygen diffusion as well as removal of metabolic waste during tissue regeneration. In the last decade, fiber-based techniques such as weaving, knitting, braiding, as well as electrospinning, and direct writing have emerged as promising platforms for making 3D tissue constructs that can address the abovementioned challenges. Here, we critically review the techniques used to form cell-free and cell-laden fibers and to assemble them into scaffolds. We compare their mechanical properties, morphological features and biological activity. We discuss current challenges and future opportunities of fiber-based tissue engineering (FBTE) for use in research and clinical practice.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Biotechnology / instrumentation
  • Biotechnology / methods
  • Cell Culture Techniques / instrumentation
  • Cell Culture Techniques / methods
  • Humans
  • Tissue Engineering / instrumentation*
  • Tissue Engineering / methods*
  • Tissue Scaffolds*