Increased proliferative cells in the medullary thick ascending limb of the loop of Henle in the Dahl salt-sensitive rat

Hypertension. 2013 Jan;61(1):208-15. doi: 10.1161/HYPERTENSIONAHA.112.199380. Epub 2012 Nov 26.

Abstract

Studies of transcriptome profiles have provided new insights into mechanisms underlying the development of hypertension. Cell type heterogeneity in tissue samples, however, has been a significant hindrance in these studies. We performed a transcriptome analysis in medullary thick ascending limbs of the loop of Henle isolated from Dahl salt-sensitive rats. Genes differentially expressed between Dahl salt-sensitive rats and salt-insensitive consomic SS.13(BN) rats on either 0.4% or 7 days of 8.0% NaCl diet (n=4) were highly enriched for genes located on chromosome 13, the chromosome substituted in the SS.13(BN) rat. A pathway involving cell proliferation and cell cycle regulation was identified as one of the most highly ranked pathways based on differentially expressed genes and by a Bayesian model analysis. Immunofluorescent analysis indicated that just 1 week of a high-salt diet resulted in a severalfold increase in proliferative medullary thick ascending limb cells in both rat strains, and that Dahl salt-sensitive rats exhibited a significantly greater proportion of medullary thick ascending limb cells in a proliferative state than in SS.13(BN) rats (15.0±1.4% versus 10.1±0.6%; n=7-9; P<0.05). The total number of cells per medullary thick ascending limb section analyzed was not different between the 2 strains. The study revealed alterations in regulatory pathways in Dahl salt-sensitive rats in tissues highly enriched for a single cell type, leading to the unexpected finding of a greater increase in the number of proliferative medullary thick ascending limb cells in Dahl salt-sensitive rats on a high-salt diet.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Cycle / physiology*
  • Cell Proliferation*
  • Gene Expression Profiling
  • Gene Expression Regulation
  • Hypertension / genetics
  • Hypertension / metabolism*
  • Hypertension / physiopathology
  • Loop of Henle / metabolism*
  • Loop of Henle / physiopathology
  • Male
  • Rats
  • Rats, Inbred Dahl
  • Sodium Chloride / metabolism

Substances

  • Sodium Chloride