A regenerable oxide-based H2S adsorbent with nanofibrous morphology

Nat Nanotechnol. 2012 Dec;7(12):810-5. doi: 10.1038/nnano.2012.194. Epub 2012 Nov 18.

Abstract

Hydrogen sulphide is found in raw fuels such as natural gas and coal/biomass-derived syngas. It is poisonous to catalysts and corrosive to metals and therefore needs to be removed. This is often achieved using metal oxides as reactive adsorbents, but metal oxides perform poorly when subjected to repeated cycles of sulphidation and re-oxidation as a result of complex structural and chemical changes. Here, we show that Zn-Ti-O-based adsorbents with nanofibrous morphology can sustain their initial reactivity and sulphur removal capacity over multiple regeneration cycles. These nanostructured sorbents offer rapid reaction rates that overcome the gas-transport limitations of conventional pellet-based sorbents and allow all of the material to be used efficiently. Regeneration can be carried out at the same temperature as the sulphidation step because of the higher reactivity, which prevents sorbent deterioration and reduces energy use. The efficient regeneration of the adsorbent is also aided by structural features such as the growth of hierarchical nanostructures and preferential stabilization of a wurtzite phase in the sulphidation product.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.