Effects of increasing concentrations of glycerol in concentrate diets on nutrient digestibility, methane emissions, growth, fatty acid profiles, and carcass traits of lambs

J Anim Sci. 2013 Feb;91(2):829-37. doi: 10.2527/jas.2012-5215. Epub 2012 Nov 12.

Abstract

Two experiments were conducted to evaluate the effects of increasing concentrations of glycerol in concentrate diets on total tract digestibility, methane (CH4) emissions, growth, fatty acid profiles, and carcass traits of lambs. In both experiments, the control diet contained 57% barley grain, 14.5% wheat dried distillers grain with solubles (WDDGS), 13% sunflower hulls, 6.5% beet pulp, 6.3% alfalfa, and 3% mineral-vitamin mix. Increasing concentrations (7, 14, and 21% dietary DM) of glycerol in the dietary DM were replaced for barley grain. As glycerol was added, alfalfa meal and WDDGS were increased to maintain similar concentrations of CP and NDF among diets. In Exp.1, nutrient digestibility and CH4 emissions from 12 ram lambs were measured in a replicated 4 × 4 Latin square experiment. In Exp. 2, lamb performance was evaluated in 60 weaned lambs that were blocked by BW and randomly assigned to 1 of the 4 dietary treatments and fed to slaughter weight. In Exp. 1, nutrient digestibility and CH4 emissions were not altered (P = 0.15) by inclusion of glycerol in the diets. In Exp.2, increasing glycerol in the diet linearly decreased DMI (P < 0.01) and tended (P = 0.06) to reduce ADG, resulting in a linearly decreased final BW. Feed efficiency was not affected by glycerol inclusion in the diets. Carcass traits and total SFA or total MUFA proportions of subcutaneous fat were not affected (P = 0.77) by inclusion of glycerol, but PUFA were linearly decreased (P < 0.01). Proportions of 16:0, 10t-18:1, linoleic acid (18:2 n-6) and the n-6/n-3 ratio were linearly reduced (P < 0.01) and those of 18:0 (stearic acid), 9c-18:1 (oleic acid), linearly increased (P < 0.01) by glycerol. When included up to 21% of diet DM, glycerol did not affect nutrient digestibility or CH4 emissions of lambs fed barley based finishing diets. Glycerol may improve backfat fatty acid profiles by increasing 18:0 and 9c-18:1 and reducing 10t-18:1 and the n-6/n-3 ratio.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Feed / analysis
  • Animal Nutritional Physiological Phenomena
  • Animals
  • Body Composition / drug effects*
  • Diet / veterinary*
  • Digestion / drug effects*
  • Fatty Acids / chemistry
  • Fatty Acids / metabolism
  • Glycerol / administration & dosage
  • Glycerol / pharmacology*
  • Methane / metabolism*
  • Sheep / growth & development*
  • Sheep / metabolism

Substances

  • Fatty Acids
  • Methane
  • Glycerol