Probing high-pressure phase transitions in Ti-based perovskite-type ferroelectrics using visible resonance Raman spectroscopy

Inorg Chem. 2012 Dec 3;51(23):12619-25. doi: 10.1021/ic300381r. Epub 2012 Nov 12.

Abstract

We report unprecedented dramatic changes in the 647.1 nm Raman signal of PbZr(0.6)Ti(0.4)O(3) occurring in the same pressure ranges as the critical pressures of the antiferrodistortive and ferroelectric-paraelectric phase transitions. This huge decrease in intensity of both the Raman modes and the background, observed for both pressure transmitting media used (glycerol or 4:1 methanol ethanol mixture), is shown to originate from the two-step loss of a resonance Raman effect and the concomitant fluorescence. Changes in the local titanium environment (first with the onset of octahedral tilting and then with the removal of polar cation displacements) alter the electronic band structure and modify the resonance conditions. Furthermore, the optimal resonance conditions are found to be particularly narrow, as shown by the fluorescence spectrum of PbZr(0.6)Ti(0.4)O(3) at atmospheric pressure characterized by the presence of a very well-defined sharp peak (fwhm = 8 nm) centered around 647.1 nm. These results thus demonstrate that visible resonance Raman spectroscopy can be used as a quick and efficient technique for probing phase transitions in PbZr(1-x)Ti(x)O(3) (PZT) and other technologically important perovskite-type materials such as PMN-xPT, PZN-xPT relaxors, lead free piezoelectrics, and ferroelectric nanopowders. This technique appears also a good alternative to UV Raman spectroscopy for probing the polar order at the nanoscale in ultrathinfilms and superlattices.