The mitochondrial genomes of Nuttalliella namaqua (Ixodoidea: Nuttalliellidae) and Argas africolumbae (Ixodoidae: Argasidae): estimation of divergence dates for the major tick lineages and reconstruction of ancestral blood-feeding characters

PLoS One. 2012;7(11):e49461. doi: 10.1371/journal.pone.0049461. Epub 2012 Nov 8.

Abstract

Ixodida are composed of hard (Ixodidae), soft (Argasidae) and the monotypic Nuttalliellidae (Nuttalliella namaqua) tick families. Nuclear 18S rRNA analysis suggested that N. namaqua was the closest extant relative to the last common ancestral tick lineage. The mitochondrial genomes of N. namaqua and Argas africolumbae were determined using next generation sequencing and de novo assembly to investigate this further. The latter was included since previous estimates on the divergence times of argasids lacked data for this major genus. Mitochondrial gene order for both was identical to that of the Argasidae and Prostriata. Bayesian analysis of the COI, Cytb, ND1, ND2 and ND4 genes confirmed the monophyly of ticks, the basal position of N. namaqua to the other tick families and the accepted systematic relationships of the other tick genera. Molecular clock estimates were derived for the divergence of the major tick lineages and supported previous estimates on the origins of ticks in the Carboniferous. N. namaqua larvae fed successfully on lizards and mice in a prolonged manner similar to many argasids and all ixodids. Excess blood meal-derived water was secreted via the salivary glands, similar to ixodids. We propose that this prolonged larval feeding style eventually gave rise to the long feeding periods that typify the single larval, nymphal and adult stages of ixodid ticks and the associated secretion of water via the salivary glands. Ancestral reconstruction of characters involved in blood-feeding indicates that most of the characteristics unique to either hard or soft tick families were present in the ancestral tick lineage.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arthropod Proteins / genetics
  • Bayes Theorem
  • Feeding Behavior
  • Genome, Mitochondrial*
  • Phylogeny
  • Ticks / classification
  • Ticks / genetics*

Substances

  • Arthropod Proteins

Grants and funding

This project was funded by the Joy Liebenberg Trust (21/19/JT02) allocated to BM and a South African National Research Foundation grant allocated to AL (NRF-Spain). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.