Maternal diets trigger sex-specific divergent trajectories of gene expression and epigenetic systems in mouse placenta

PLoS One. 2012;7(11):e47986. doi: 10.1371/journal.pone.0047986. Epub 2012 Nov 5.

Abstract

Males and females responses to gestational overnutrition set the stage for subsequent sex-specific differences in adult onset non communicable diseases. Placenta, as a widely recognized programming agent, contibutes to the underlying processes. According to our previous findings, a high-fat diet during gestation triggers sex-specific epigenetic alterations within CpG and throughout the genome, together with the deregulation of clusters of imprinted genes. We further investigated the impact of diet and sex on placental histology, transcriptomic and epigenetic signatures in mice. Both basal gene expression and response to maternal high-fat diet were sexually dimorphic in whole placentas. Numerous genes showed sexually dimorphic expression, but only 11 genes regardless of the diet. In line with the key role of genes belonging to the sex chromosomes, 3 of these genes were Y-specific and 3 were X-specific. Amongst all the genes that were differentially expressed under a high-fat diet, only 16 genes were consistently affected in both males and females. The differences were not only quantitative but remarkably qualitative. The biological functions and networks of genes dysregulated differed markedly between the sexes. Seven genes of the epigenetic machinery were dysregulated, due to effects of diet, sex or both, including the Y- and X-linked histone demethylase paralogues Kdm5c and Kdm5d, which could mark differently male and female epigenomes. The DNA methyltransferase cofactor Dnmt3l gene expression was affected, reminiscent of our previous observation of changes in global DNA methylation. Overall, this striking sexual dimorphism of programming trajectories impose a considerable revision of the current dietary interventions protocols.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • DNA (Cytosine-5-)-Methyltransferases / genetics
  • DNA (Cytosine-5-)-Methyltransferases / metabolism
  • Diet, High-Fat / adverse effects*
  • Epigenesis, Genetic*
  • Female
  • Gene Expression Regulation, Enzymologic
  • Gene Expression*
  • Histone Demethylases
  • Male
  • Mice
  • Oligonucleotide Array Sequence Analysis
  • Oxidoreductases, N-Demethylating / genetics
  • Oxidoreductases, N-Demethylating / metabolism
  • Placenta / metabolism*
  • Placenta / physiopathology
  • Pregnancy
  • Prenatal Exposure Delayed Effects / genetics*
  • Prenatal Exposure Delayed Effects / metabolism
  • Prenatal Nutritional Physiological Phenomena
  • Sex Characteristics
  • Transcriptome

Substances

  • Histone Demethylases
  • Kdm5c protein, mouse
  • Oxidoreductases, N-Demethylating
  • Dnmt3l protein, mouse
  • DNA (Cytosine-5-)-Methyltransferases

Grants and funding

This work was supported by the Fondation Cœur et Artères (FCA N° 05-T4), the Institut Benjamin Delessert, the Agence Nationale pour la Recherche (ANR 06-PNRA-022-01) and Contrat Cadre d’Aide au Projet d’Innovation Stratégique Industrielle “IT-Diab” OSEO-ISI (18/12/2008). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.