Identification of several sub-populations in the pool of light harvesting proteins in the pennate diatom Phaeodactylum tricornutum

Biochim Biophys Acta. 2013 Mar;1827(3):303-10. doi: 10.1016/j.bbabio.2012.10.017. Epub 2012 Nov 7.

Abstract

Diatoms are major contributors to the photosynthetic productivity of marine phytoplankton. In these organisms, fucoxanthin-chlorophyll proteins (FCPs) serve as light-harvesting proteins. We have explored the FCP complexes in Phaeodactylum tricornutum under low light (LL) and high light (HL) conditions. Sub-fractionating the pool of major FCPs yielded different populations of trimeric complexes. Only Lhcf and Lhc-like proteins were found in the trimers. Under LL, the first polypeptide fraction contained six different Lhcfs and was mainly composed of Lhcf10. It was characterised by the highest amount of fucoxanthin (Fx). The second was dominated by Lhcf10, Lhcf5 and Lhcf2, and had a lower Fx/Chl c ratio. Little Fx/Chl c also characterised the most abundant FCP complexes, found in fraction 3, composed mainly of Lhcf5. These FCPs bound Fx molecules with the strongest bathochromic shift. The last two fractions contained FCP complexes that were built mainly of Lhcf4, harbouring more Fx molecules that absorbed at shorter wavelengths. Under HL, the same main polypeptides were retrieved in the different fractions and spectroscopic features were almost identical except for a higher diadinoxanthin content. The total amount of Lhcf5 was reduced under HL, whereas the amount of the last two fractions and thereby Lhcf4 was increased. Lhcf11 was identified in different LL fractions, but not detected in any HL fraction, while two new Lhc-like proteins were only found under HL. This is the first report on different trimeric FCP complexes in pennate diatoms, which differ in polypeptide composition and pigmentation, and are differentially expressed by light.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chlorophyll Binding Proteins / chemistry*
  • Diatoms / metabolism*
  • Light
  • Protein Binding

Substances

  • Chlorophyll Binding Proteins