High resolution UV roll-to-roll nanoimprinting of resin moulds and subsequent replication via thermal nanoimprint lithography

Nanotechnology. 2012 Dec 7;23(48):485310. doi: 10.1088/0957-4484/23/48/485310. Epub 2012 Nov 9.

Abstract

UV roll-to-roll nanoimprinting at high resolution is still a relatively unexplored field of study with far-reaching application potential. One enabling technology that is particularly worthy of attention is mass production of high resolution resin moulds via UV roll-to-roll nanoimprinting at such high throughput and low cost that they can be used only once and disposed of or recycled economically. Low cost, high resolution resin moulds can greatly improve the production cost profile for a number of applications in biomedicine, nanofluidics, data storage and electronics with relatively low unit values but which require one or more nanoscale lithography steps. In this report, UV roll-to-roll nanoimprinting was employed to fabricate high fidelity resin moulds with nanoscale as well as mixed micro- and nanoscale features down to 50 nm feature diameter, at up to 120 cm(2) area and at 10 m min(-1) throughput. UV roll-to-roll nanoimprinted resin moulds were subsequently segmented out, employed in a batch mode thermal nanoimprinting process, and characterized to study performance and demonstrate viability. The results show that high resolution mixed nanostructures can be faithfully replicated in PMMA on silicon substrates with minimal volumetric shrinkage. Process details and challenges specific to roll-to-roll fabrication of resin moulds are discussed at length, particularly with respect to the curvature uniformity of the imprint roller.

Publication types

  • Research Support, Non-U.S. Gov't