Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay

Anal Chem. 2012 Nov 20;84(22):10136-46. doi: 10.1021/ac3028068. Epub 2012 Nov 5.

Abstract

Semiconductor quantum dots (QDs) are attractive probes for optical sensing and imaging due to their unique photophysical attributes and nanoscale size. In particular, the development of assays and biosensors based on QDs and Förster resonance energy transfer (FRET) continues to be a prominent focus of research. Here, we demonstrate the application of QDs as simultaneous donors and acceptors in a time-gated FRET relay for the multiplexed detection of protease activity. In contrast to the current state-of-the-art, which uses multiple colors of QDs, multiplexing was achieved using only a single color of QD. The other constituents of the FRET relay, a luminescent terbium complex and fluorescent dye, were assembled to QDs via peptides that were selected as substrates for the model proteases trypsin and chymotrypsin. Loss of prompt FRET between the QD and dye signaled the activity of chymotrypsin; loss of time-gated FRET between the terbium and QD signaled the activity of trypsin. We applied the FRET relay in a series of quantitative, real-time kinetic assays of increasing biochemical complexity, including multiplexed sensing, measuring inhibition in a multiplexed format, and tracking the proteolytic activation of an inactive pro-protease to its active form in a coupled, multienzyme system. These capabilities were derived from a ratiometric analysis of the two FRET pathways in the relay and permitted extraction of initial reaction rates, enzyme specificity constants, and apparent inhibition constants. This work adds to the growing body of research on multifunctional nanoparticles and introduces multiplexed sensing as a novel capability for a single nanoparticle vector. Furthermore, the ability to track both enzymes within a coupled biological system using one vector represents a significant advancement for nanoparticle-based biosensing. Prospective applications in biochemical research, applied diagnostics, and drug discovery are discussed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Chymotrypsin / metabolism*
  • Color
  • Enzyme Assays / methods*
  • Fluorescence Resonance Energy Transfer*
  • Molecular Sequence Data
  • Peptides / chemistry
  • Peptides / metabolism
  • Quantum Dots*
  • Time Factors
  • Trypsin / metabolism*

Substances

  • Peptides
  • Chymotrypsin
  • Trypsin