High pressure synthesis and in situ Raman spectroscopy of H2 and HD clathrate hydrates

J Chem Phys. 2012 Oct 28;137(16):164320. doi: 10.1063/1.4762864.

Abstract

By means of a newly constructed high pressure and low temperature optical apparatus we have measured the Raman spectra of H(2) and HD simple clathrate hydrates, synthesized in situ by the application of more than 2500 bar gas pressure on solid water. High resolution spectra of the molecular vibration have been measured at low temperature (about 20 K). In the case of HD this band is simpler than in the case of H(2), where the presence of the ortho- and para-species complicated the interpretation of the spectrum. We have determined frequency positions of the bands arising from multiple occupancy of the large cages of the sII clathrate, some of which are almost superimposed. The intensity of the bands gives information on the average and distribution of cage occupation, and of the ortho-para (o-p) ratio of H(2) molecules. Hydrogen o-p conversion rate is measured, for molecules in the small cages and in the large cages, and it is observed that these are different. A model considering both intrinsic and extrinsic conversion processes is applied to the measured data. The intrinsic conversion rate so derived is compared favorably to that measured for pure hydrogen in different situations.