Mammalian P4-ATPases and ABC transporters and their role in phospholipid transport

Biochim Biophys Acta. 2013 Mar;1831(3):555-74. doi: 10.1016/j.bbalip.2012.10.006. Epub 2012 Oct 26.

Abstract

Transport of phospholipids across cell membranes plays a key role in a wide variety of biological processes. These include membrane biosynthesis, generation and maintenance of membrane asymmetry, cell and organelle shape determination, phagocytosis, vesicle trafficking, blood coagulation, lipid homeostasis, regulation of membrane protein function, apoptosis, etc. P(4)-ATPases and ATP binding cassette (ABC) transporters are the two principal classes of membrane proteins that actively transport phospholipids across cellular membranes. P(4)-ATPases utilize the energy from ATP hydrolysis to flip aminophospholipids from the exocytoplasmic (extracellular/lumen) to the cytoplasmic leaflet of cell membranes generating membrane lipid asymmetry and lipid imbalance which can induce membrane curvature. Many ABC transporters play crucial roles in lipid homeostasis by actively transporting phospholipids from the cytoplasmic to the exocytoplasmic leaflet of cell membranes or exporting phospholipids to protein acceptors or micelles. Recent studies indicate that some ABC proteins can also transport phospholipids in the opposite direction. The importance of P(4)-ATPases and ABC transporters is evident from the findings that mutations in many of these transporters are responsible for severe human genetic diseases linked to defective phospholipid transport. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • ATP-Binding Cassette Transporters / chemistry
  • ATP-Binding Cassette Transporters / genetics
  • ATP-Binding Cassette Transporters / metabolism*
  • Adenosine Triphosphate / metabolism
  • Animals
  • Biological Transport / physiology
  • Cell Membrane / metabolism
  • Homeostasis
  • Humans
  • Lipid Metabolism
  • Mutation
  • Phospholipid Transfer Proteins / chemistry
  • Phospholipid Transfer Proteins / genetics
  • Phospholipid Transfer Proteins / metabolism*
  • Phospholipids / metabolism*
  • Protein Isoforms / chemistry
  • Protein Isoforms / genetics
  • Protein Isoforms / metabolism
  • Protein Structure, Tertiary
  • Transport Vesicles / metabolism

Substances

  • ATP-Binding Cassette Transporters
  • Phospholipid Transfer Proteins
  • Phospholipids
  • Protein Isoforms
  • Adenosine Triphosphate