Spinal cord stimulation: therapeutic benefits and movement generation after spinal cord injury

Handb Clin Neurol. 2012:109:283-96. doi: 10.1016/B978-0-444-52137-8.00018-8.

Abstract

Spinal cord injury (SCI) is a devastating neurological condition that leads to loss of motor and sensory function. It commonly causes impairments in limb movements, respiration, bowel and bladder function, as well as secondary complications including pain, spasticity, and pressure ulcers. Numerous interventions such as neuroprotection, regeneration, pharmacology, rehabilitation training, and functional electrical stimulation are under investigation for improving function after SCI. This chapter discusses the use of spinal cord stimulation (epidural and intraspinal electrical stimulation) for alleviating pain and spasticity, and restoring standing and walking. Epidural stimulation is effective in reducing the intensity of intractable pain, but its effectiveness in the treatment of spasticity remains unclear. It can induce rhythmic, locomotor-like movements in the legs, presumably due to the activation of afferent pathways. Intraspinal microstimulation is a new electrical stimulation approach that activates locomotor-related networks within the ventral regions of the lumbosacral spinal cord. In animals, this approach is capable of producing prolonged, fatigue-resistant standing and stepping of the hindlegs. While the results in animals have been very encouraging, technical advancements are necessary prior to its implementation in humans with SCI. Taken collectively, spinal cord stimulation holds substantial promise in restoring function after neural injury or disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Electric Stimulation Therapy / methods*
  • Epidural Space / physiology
  • Humans
  • Spinal Cord / physiology*
  • Spinal Cord Injuries / therapy*