Band gap engineering of silicene zigzag nanoribbons with perpendicular electric fields: a theoretical study

J Phys Condens Matter. 2012 Nov 14;24(45):455302. doi: 10.1088/0953-8984/24/45/455302. Epub 2012 Oct 19.

Abstract

The electronic properties of silicene zigzag nanoribbons with the presence of perpendicular fields are studied by using first-principles calculations and the generalized nearest neighboring approximation method. In contrast to the planar graphene, in silicene the Si atoms are not coplanar. As a result, by applying perpendicular fields to the two-dimensional silicene sheet, the on-site energy can be modulated and the band gap at the Dirac point is open. The buckled structure also creates a height difference between the two edges of the silicene zigzag nanoribbons. We find that the external fields can modulate the energies of spin-polarized edge states and their corresponding band gaps. Due to the polarization in the plane, the modulation effect is width dependent and becomes much more significant for narrow ribbons.

Publication types

  • Research Support, Non-U.S. Gov't