On the segregation of protein ionic residues by charge type

Amino Acids. 2012 Dec;43(6):2231-47. doi: 10.1007/s00726-012-1418-4. Epub 2012 Oct 19.

Abstract

Based on ubiquitous presence of large ionic motifs and clusters in proteins involved in gene transcription and protein synthesis, we analyzed the distribution of ionizable sidechains in a broad selection of proteins with regulatory, metabolic, structural and adhesive functions, in agonist, antagonist, toxin and antimicrobial peptides, and in self-excising inteins and intron-derived proteins and sequence constructs. All tested groups, regardless of taxa or sequence size, show considerable segregation of ionizable sidechains into same type charge (homoionic) tracts. These segments in most cases exceed half of the sequence length and comprise more than two-thirds of all ionizable sidechains. This distribution of ionic residues apparently reflects a fundamental advantage of sorted electrostatic contacts in association of sequence elements within and between polypeptides, as well as in interaction with polynucleotides. While large ionic densities are encountered in highly interactive proteins, the average ionic density in most sets does not change appreciably with size of the homoionic segments, which supports the segregation as a modular feature favoring association.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Humans
  • Ions / chemistry
  • Ions / metabolism
  • Proteins / chemistry
  • Proteins / genetics
  • Proteins / metabolism*

Substances

  • Ions
  • Proteins