Poly(ADP-ribosyl)ation acts in the DNA demethylation of mouse primordial germ cells also with DNA damage-independent roles

PLoS One. 2012;7(10):e46927. doi: 10.1371/journal.pone.0046927. Epub 2012 Oct 5.

Abstract

Poly(ADP-ribosyl)ation regulates chromatin structure and transcription driving epigenetic events. In particular, Parp1 is able to directly influence DNA methylation patterns controlling transcription and activity of Dnmt1. Here, we show that ADP-ribose polymer levels and Parp1 expression are noticeably high in mouse primordial germ cells (PGCs) when the bulk of DNA demethylation occurs during germline epigenetic reprogramming in the embryo. Notably, Parp1 activity is stimulated in PGCs even before its participation in the DNA damage response associated with active DNA demethylation. We demonstrate that PARP inhibition impairs both genome-wide and locus-specific DNA methylation erasure in PGCs. Moreover, we evidence that impairment of PARP activity causes a significant reduction of expression of the gene coding for Tet1 hydroxylases involved in active DNA demethylation. Taken together these results demonstrate new and adjuvant roles of poly(ADP-ribosyl)ation during germline DNA demethylation and suggest its possible more general involvement in genome reprogramming.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analysis of Variance
  • Animals
  • Blotting, Western
  • DNA (Cytosine-5-)-Methyltransferase 1
  • DNA (Cytosine-5-)-Methyltransferases / genetics
  • DNA (Cytosine-5-)-Methyltransferases / metabolism
  • DNA Damage*
  • DNA Methylation*
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism
  • Embryo, Mammalian / cytology
  • Embryo, Mammalian / embryology
  • Embryo, Mammalian / metabolism*
  • Female
  • Gene Expression Regulation, Developmental
  • Germ Cells / metabolism*
  • Male
  • Mice
  • Poly (ADP-Ribose) Polymerase-1
  • Poly Adenosine Diphosphate Ribose / metabolism
  • Poly(ADP-ribose) Polymerases / genetics
  • Poly(ADP-ribose) Polymerases / metabolism*
  • Proto-Oncogene Proteins / genetics
  • Proto-Oncogene Proteins / metabolism
  • Reverse Transcriptase Polymerase Chain Reaction
  • Time Factors

Substances

  • DNA-Binding Proteins
  • Proto-Oncogene Proteins
  • TET1 protein, mouse
  • Poly Adenosine Diphosphate Ribose
  • DNA (Cytosine-5-)-Methyltransferase 1
  • DNA (Cytosine-5-)-Methyltransferases
  • Dnmt1 protein, mouse
  • Parp1 protein, mouse
  • Poly (ADP-Ribose) Polymerase-1
  • Poly(ADP-ribose) Polymerases

Grants and funding

This work was supported by grants from Ministero della Salute (PC), from International FIRB 2006 (RBIN06E9Z8_003) and from Ministero dell’Istruzione, dell’Università e della Ricerca (PRIN 2008, PC, MDF), Italy. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.