Metabolic tumor volume assessed by 18F-FDG PET/CT for the prediction of outcome in patients with multiple myeloma

J Nucl Med. 2012 Dec;53(12):1829-35. doi: 10.2967/jnumed.112.106500. Epub 2012 Oct 15.

Abstract

(18)F-FDG PET/CT allows the direct measurement of metabolic tumor burden in a variety of different malignancies. The aim of this study was to assess whether metabolic tumor volume (MTV) determined by (18)F-FDG PET/CT could be used in the prediction of progression-free and overall survival in multiple myeloma patients.

Methods: Forty-seven patients (18 women, 29 men; mean age ± SD, 63 ± 11 y) with stage IIIA disease who had undergone whole-body (18)F-FDG PET/CT were retrospectively evaluated. Images underwent a 3-dimensional region-of-interest analysis including all focal lesions with a maximum standardized uptake value > 2.5. The MTV of each lesion was calculated using an automated contouring program based on the standardized uptake value and developed with a threshold of 40% of the maximum standardized uptake value. The total MTV of each patient was defined as the sum of metabolic volume of all focal lesions. Patients were treated and then subjected to a mean follow-up period of 24 mo.

Results: In the 47 patients studied, MTV range was 1.3-316.3 mL, with a median of 23.7 mL. A direct, significant correlation was found between MTV and the percentage of diffuse infiltration of bone marrow by plasma cells (r = 0.46, P = 0.006), whereas hemoglobin levels were inversely correlated with MTV (r = -0.56, P = 0.0001). At follow-up, patients who developed progressive disease (n = 18) showed a significantly higher MTV (74.7 ± 19.3 vs. 29.8 ± 5.1 mL, P = 0.009) than patients without progressive disease (n = 29). Furthermore, patients who died of myeloma (n = 9) had a significantly higher MTV (123.2 ± 30.6 vs. 28.9 ± 4.2 mL, P = 0.0001) than survivors (n = 38). No differences in age, plasma cell infiltration, M protein, albumin, β2-microglobulin, performance status, International Staging System score, and presence or absence of a bone marrow transplant were found between groups. The MTV cutoff level was determined by receiver-operating-characteristic curve analysis, and the best discriminative value found for predicting progression-free and overall survival was 42.2 and 77.6 mL, respectively. By Kaplan-Meier analysis and log-rank testing, progression-free and overall survival at follow-up were significantly better in patients showing an MTV lower than the cutoff than in those having an MTV higher than the cutoff (χ(2) = 3.9, P = 0.04, and χ(2) = 56.3, P < 0.0001, respectively).

Conclusion: The direct measurement of tumor burden obtained by calculating MTV on (18)F-FDG PET/CT images may be used in the prediction of progression-free and overall survival in myeloma patients.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Female
  • Fluorodeoxyglucose F18*
  • Glycolysis
  • Humans
  • Male
  • Middle Aged
  • Multimodal Imaging*
  • Multiple Myeloma / diagnostic imaging*
  • Multiple Myeloma / metabolism
  • Multiple Myeloma / pathology*
  • Positron-Emission Tomography*
  • Prognosis
  • Retrospective Studies
  • Survival Analysis
  • Tomography, X-Ray Computed*
  • Tumor Burden*

Substances

  • Fluorodeoxyglucose F18