A computational study of the CO dissociation in cyclopentadienyl ruthenium complexes relevant to the racemization of alcohols

Dalton Trans. 2013 Jan 28;42(4):927-34. doi: 10.1039/c2dt31919e.

Abstract

The formation of an active 16-electron ruthenium sec-alkoxide complex via loss of the CO ligand is an important step in the mechanism of the racemization of sec-alcohols by (η(5)-Ph(5)C(5))Ru(CO)(2)X ruthenium complexes with X = Cl and O(t)Bu. Here we show with accurate DFT calculations the potential energy profile of the CO dissociation pathway for a series of relevant (η(5)-Ph(5)C(5))Ru(CO)(2)X complexes, where X = Cl, O(t)Bu, H and COO(t)Bu. We have found that the CO dissociation energy increases in the following order: O(t)Bu (lowest), Cl, COO(t)Bu and H (highest). Using the distance between ruthenium and C(CO), r = Ru-C(CO), as a constraint, and by optimizing all other degrees of freedom for a range of Ru-CO distances, we obtained relative energies, ΔE(r) and geometries of a sufficient number of transient structures with the elongated Ru-CO bond up to r = 3.4 Å. Our calculations provide a quantitative understanding of the CO ligand dissociation in (η(5)-Ph(5)C(5))Ru(CO)(2)Cl and (η(5)-Ph(5)C(5))Ru(CO)(2)(O(t)Bu) complexes, which is relevant to the mechanism of their catalytic activity in the racemization of alcohols. We recently reported that exchange of the CO ligand by isotopically labeled (13)CO in the Ru-O(t)Bu complex occurs twenty times faster than that in the Ru-Cl complex. This corresponds to a difference of 1.8 kcal mol(-1) in the CO dissociation energy (at room temperature). This is in very good agreement with the calculated difference between the two potential energy curves for Ru-O(t)Bu and Ru-Cl complexes, which is about 1.8-2 kcal mol(-1) around the corresponding transition states of the CO dissociation. The calculated difference in the total energy for CO dissociation in (η(5)-Ph(5)C(5))Ru(CO)(2)X complexes is related to the stabilization provided by the X group in the final 16-electron complexes, which are formed via product-like transition states. In addition to the calculated transition states of CO dissociation in Ru-O(t)Bu and Ru-Cl complexes, the calculated transient structures with the elongated Ru-CO bond provide insight into how the geometry of the ruthenium complex with a potent heteroatom donor group (X) gradually changes when one of the COs is dissociating.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alcohols / chemistry*
  • Carbon Monoxide / chemistry*
  • Catalysis
  • Coordination Complexes / chemistry*
  • Models, Chemical
  • Molecular Conformation
  • Ruthenium / chemistry*
  • Thermodynamics

Substances

  • Alcohols
  • Coordination Complexes
  • Carbon Monoxide
  • Ruthenium