Establishment of an in vitro photoallergy test using NCTC2544 cells and IL-18 production

Toxicol In Vitro. 2013 Feb;27(1):103-10. doi: 10.1016/j.tiv.2012.09.017. Epub 2012 Oct 5.

Abstract

Differentiation between photoallergenic and phototoxic reactions induced by low molecular weight compounds represents a current problem. The use of keratinocytes as a potential tool for the detection of photoallergens as opposed to photoirritants is considered an interesting strategy for developing in vitro methods. We have previously demonstrated the possibility to use the human keratinocyte cell line NCTC2455 and the production of interleukin-18 (IL-18) to screen low molecular weight sensitizers. The purpose of this work was to explore the possibility to use the NCTC2544 assay to identify photoallergens and discriminate from phototoxic chemicals. First, we identified suitable condition of UV-irradiation (3.5 J/cm(2)) by investigating the effect of UVA irradiation on intracellular IL-18 on untreated or chloropromazine (a representative phototoxic compound)-treated NCTC2544 cells. Then, the effect of UVA-irradiation over NCTC2544 cells treated with increasing concentrations of 15 compounds including photoallergens (benzophenone, 4-ter-butyl-4-methoxy-dibenzoylmethane, 2-ethylexyl-p-methoxycinnamate, ketoprofen, 6-methylcumarin); photoirritant and photoallergen (4-aminobenzoic acid, chlorpromazine, promethazine); photoirritants (acridine, ibuprofen, 8-methoxypsoralen, retinoic acid); and negative compounds (lactic acid, SDS and p-phenilendiamine) was investigated. Twenty-four hours after exposure, cytotoxicity was evaluated by the MTT assay or LDH leakage, while ELISA was used to measure the production of IL-18. At the maximal concentration assayed with non-cytotoxic effects (CV80 under irradiated condition), all tested photoallergens induced a significant and a dose-dependent increase of intracellular IL-18 following UVA irratiation, whereas photoirritants failed. We suggest that this system may be useful for the in vitro evaluation of the photoallergic potential of chemicals.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Allergens / toxicity*
  • Cell Line
  • Cell Survival / drug effects
  • Dermatitis, Photoallergic / diagnosis
  • Humans
  • Immunologic Tests
  • Interleukin-18 / immunology*
  • Keratinocytes / drug effects*
  • Keratinocytes / immunology

Substances

  • Allergens
  • Interleukin-18