X-ray absorption spectroscopy study of novel inorganic-organic hybrid ferromagnetic Cu-pyz-[M(CN)8]3- assemblies

Inorg Chem. 2012 Nov 5;51(21):11722-9. doi: 10.1021/ic301634m. Epub 2012 Oct 8.

Abstract

We present a unique interpretation of X-ray absorption spectroscopy (XAS) spectra at Cu:K, W:L(3), and Mo:K edges of structurally related magnetic Cu(II)-[M(V)(CN)(8)](3-) compounds. The approach results in description of the structure of novel three-dimensional (3-D) Cu(II)(3)(pyz)[M(V)(CN)(8)](2)·xH(2)O, M = W (1), Mo, (2) polymers. Assemblies 1 and 2 represent hybrid inorganic-organic compounds built of {Cu(II)[W(V)(CN)(8)](-)}(n) double-layers linked by cyanido-bridged {Cu(II)-(μ-pyz)(2+)}(n) chains. These Cu(II)-M(V) systems reveal long-range magnetic ordering with T(c) of 43 and 37 K for 1 and 2, respectively. The presence of the 3-D coordination networks and 8 cyanido-bridges at M(V) centers leads to the highest Curie temperatures and widest hysteresis loops among Cu(II)-[M(V)(CN)(8)](3-) systems.