Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering

Opt Express. 2012 Aug 13;20(17):18836-45. doi: 10.1364/OE.20.018836.

Abstract

We report the first demonstration of a photonic chip based dynamically reconfigurable, widely tunable, narrow pass-band, high Q microwave photonic filter (MPF). We exploit stimulated Brillouin scattering (SBS) in a 6.5 cm long chalcogenide (As2S3) photonic chip to demonstrate a MPF that exhibited a high quality factor of ~520 and narrow bandwidth and was dynamically reconfigurable and widely tunable. It maintained a stable 3 dB bandwidth of 23 ± 2MHz and amplitude of 20 ± 2 dB over a large frequency tuning range of 2-12 GHz. By tailoring the pump spectrum, we reconfigured the 3 dB bandwidth of the MPF from ~20 MHz to ~40 MHz and tuned the shape factor from 3.5 to 2 resulting in a nearly flat-topped filter profile. This demonstration represents a significant advance in integrated microwave photonics with potential applications in on-chip microwave signal processing for RADAR and analogue communications.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Computer-Aided Design
  • Equipment Design
  • Equipment Failure Analysis
  • Microwaves
  • Photons
  • Refractometry / instrumentation*
  • Scattering, Radiation
  • Telecommunications / instrumentation*