Controlled growth and applications of complex metal oxide ZnSn(OH)6 polyhedra

Inorg Chem. 2012 Oct 15;51(20):10990-5. doi: 10.1021/ic301496k. Epub 2012 Oct 2.

Abstract

We successfully controlled the crystallographic surface of ZnSn(OH)(6) crystals and systematically obtained ZnSn(OH)(6) crystals in different shapes including cubes, truncated cubes, cuboctahedrons, truncated octahedrons, and octahedrons using a simple solvothermal method in a methylcellulose (MC) ethanol/water solution. By simply adjusting the amount of the NaOH solution added to the reaction system, we observed the shape evolution of ZnSn(OH)(6) particles from cube to octahedron, with the sizes gradually increasing from about 200 nm to 1-2 μm. These results not only provide ZnSn(OH)(6) polyhedra bound by different lattice planes, but also make it possible to investigate the morphology-property relationship of ZnSn(OH)(6) particles with different morphologies obtained under similar conditions. The antibacterial activities of the as-prepared ZnSn(OH)(6) polyhedral particles were studied. It was found that the antibacterial activities of ZnSn(OH)(6) particles against Escherichia coli depend on the shape of the ZnSn(OH)(6) particles, demonstrating that the surface structure of nanocrystals affects the antibacterial activity. Additionally, the obtained ZnSn(OH)(6) polyhedra can be applied as precursors for Zn(2)SnO(4)/SnO(2) composites with different morphologies by calcining at 600 °C.