Quantum superinductor with tunable nonlinearity

Phys Rev Lett. 2012 Sep 28;109(13):137003. doi: 10.1103/PhysRevLett.109.137003. Epub 2012 Sep 27.

Abstract

We report on the realization of a superinductor, a dissipationless element whose microwave impedance greatly exceeds the resistance quantum R(Q). The design of the superinductor, implemented as a ladder of nanoscale Josephson junctions, enables tuning of the inductance and its nonlinearity by a weak magnetic field. The Rabi decay time of the superinductor-based qubit exceeds 1 μs. The high kinetic inductance and strong nonlinearity offer new types of functionality, including the development of qubits protected from both flux and charge noises, fault tolerant quantum computing, and high-impedance isolation for electrical current standards based on Bloch oscillations.