Spatial distribution of phosphate species in mature and newly generated Mammalian bone by hyperspectral Raman imaging

J Biomed Opt. 1999 Jan;4(1):28-34. doi: 10.1117/1.429918.

Abstract

Hyperspectral Raman images of mineral components of trabecular and cortical bone at 3 μm spatial resolution are presented. Contrast is generated from Raman spectra acquired over the 600-1400 cm-1 Raman shift range. Factor analysis on the ensemble of Raman spectra is used to generate descriptors of mineral components. In trabecular bone independent phosphate (PO4-3) and monohydrogen phosphate (HPO4-2) factors are observed. Phosphate and monohydrogen phosphate gradients extend from trabecular packets into the interior of a rod. The gradients are sharply defined in newly regenerated bone. There, HPO4-2 content maximizes near a trabecular packet and decreases to a minimum value over as little as a 20 μm distance. Incomplete mineralization is clearly visible. In cortical bone, factor analysis yields only a single mineral factor containing both PO4-3 and HPO4-2 signatures and this implies uniform distribution of these ions in the region imaged. Uniform PO4-3 and HPO4-2 distribution is verified by spectral band integration. © 1999 Society of Photo-Optical Instrumentation Engineers.