Role of the DELSEED loop in torque transmission of F1-ATPase

Biophys J. 2012 Sep 5;103(5):970-8. doi: 10.1016/j.bpj.2012.06.054.

Abstract

F(1)-ATPase is an ATP-driven rotary motor that generates torque at the interface between the catalytic β-subunits and the rotor γ-subunit. The β-subunit inwardly rotates the C-terminal domain upon nucleotide binding/dissociation; hence, the region of the C-terminal domain that is in direct contact with γ-termed the DELSEED loop-is thought to play a critical role in torque transmission. We substituted all the DELSEED loop residues with alanine to diminish specific DELSEED loop-γ interactions and with glycine to disrupt the loop structure. All the mutants rotated unidirectionally with kinetic parameters comparable to those of the wild-type F(1), suggesting that the specific interactions between DELSEED loop and γ is not involved in cooperative interplays between the catalytic β-subunits. Glycine substitution mutants generated half the torque of the wild-type F(1), whereas the alanine mutant generated comparable torque. Fluctuation analyses of the glycine/alanine mutants revealed that the γ-subunit was less tightly held in the α(3)β(3)-stator ring of the glycine mutant than in the wild-type F(1) and the alanine mutant. Molecular dynamics simulation showed that the DELSEED loop was disordered by the glycine substitution, whereas it formed an α-helix in the alanine mutant. Our results emphasize the importance of loop rigidity for efficient torque transmissions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Motifs
  • Amino Acid Sequence
  • Amino Acid Substitution
  • Bacillus / enzymology
  • Kinetics
  • Molecular Dynamics Simulation
  • Molecular Sequence Data
  • Mutation
  • Protein Structure, Tertiary
  • Proton-Translocating ATPases / chemistry*
  • Proton-Translocating ATPases / genetics
  • Proton-Translocating ATPases / metabolism*
  • Rotation
  • Torque*

Substances

  • Proton-Translocating ATPases