Chemical-potential route: a hidden Percus-Yevick equation of state for hard spheres

Phys Rev Lett. 2012 Sep 21;109(12):120601. doi: 10.1103/PhysRevLett.109.120601. Epub 2012 Sep 17.

Abstract

The chemical potential of a hard-sphere fluid can be expressed in terms of the contact value of the radial distribution function of a solute particle with a diameter varying from zero to that of the solvent particles. Exploiting the explicit knowledge of such a contact value within the Percus-Yevick theory, and using standard thermodynamic relations, a hitherto unknown Percus-Yevick equation of state, p/ρk(B)T = -(9/η) ln(1-η)-(16-31η)/2(1-η)(2), is unveiled. This equation of state turns out to be better than the one obtained from the conventional virial route. Interpolations between the chemical-potential and compressibility routes are shown to be more accurate than the widely used Carnahan-Starling equation of state. The extension to polydisperse hard-sphere systems is also presented.