Orientational order of carbon nanotube guests in a nematic host suspension of colloidal viral rods

Phys Rev Lett. 2012 Jun 15;108(24):247801. doi: 10.1103/PhysRevLett.108.247801. Epub 2012 Jun 15.

Abstract

In order to investigate the coupling between the degrees of alignment of elongated particles in binary nematic dispersions, surfactant stabilized single-wall carbon nanotubes (CNTs) have been added to nematic suspensions of colloidal rodlike viruses in aqueous solution. We have independently measured the orientational order parameter of both components of the guest-host system by means of polarized Raman spectroscopy and by optical birefringence, respectively. Our system allows us therefore to probe the regime where the guest particles (CNTs) are shorter and thinner than the fd virus host particles. We show that the degree of order of the CNTs is systematically smaller than that of the fd virus particles for the whole nematic range. These measurements are in good agreement with predictions of an Onsager-type second-viral theory, which explicitly includes the flexibility of the virus particles, and the polydispersity of the CNTs.