Autodisplay of nitrilase from Klebsiella pneumoniae and whole-cell degradation of oxynil herbicides and related compounds

Appl Microbiol Biotechnol. 2013 Jun;97(11):4887-96. doi: 10.1007/s00253-012-4401-9. Epub 2012 Sep 18.

Abstract

Using the Autodisplay system, a recombinant Escherichia coli strain displaying the dimeric nitrilase from Klebsiella pneumoniae subsp. ozaenae (NitKp) on the cell surface was constructed. Localization of the nitrilase in the cell envelope of E. coli was monitored by sodium dodecyl sulfate polyacrylamide gel electrophoresis and surface exposure was verified by its accessibility to externally added protease. The whole-cell biocatalyst obtained converted the substrates analyzed in the following order: chloroxynil > bromoxynil > ioxynil > 3-bromo-4-hydroxybenzonitrile (1.67, 0.89, 0.13, and 0.09 mM product formation within 72 h, respectively), indicating the same substrate specificity for the displayed enzyme as for the free enzyme. The whole-cell biocatalyst was also able to convert 3-fluoro-4-hydroxybenzonitrile and 3,5-dimethyl-4-hydroxybenzonitrile to the corresponding carboxylic acids. In contrast, it was not possible to detect any enzyme activity when 4-methoxybenzonitrile was used as substrate. The temperature optimum determined was 45 °C for the surface-displayed enzyme instead of 35 °C for the purified enzyme. In addition, the optimum activity of the displayed nitrilase was shifted to more acidic pH in comparison to the free enzyme.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aminohydrolases / chemistry
  • Aminohydrolases / genetics
  • Aminohydrolases / metabolism*
  • Biotransformation
  • Cell Surface Display Techniques / methods*
  • Enzyme Stability
  • Enzymes, Immobilized / chemistry
  • Enzymes, Immobilized / genetics
  • Enzymes, Immobilized / metabolism
  • Escherichia coli / enzymology*
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Herbicides / metabolism*
  • Hydrogen-Ion Concentration
  • Klebsiella pneumoniae / enzymology*
  • Klebsiella pneumoniae / genetics
  • Klebsiella pneumoniae / metabolism
  • Nitriles / metabolism*
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Substrate Specificity
  • Temperature

Substances

  • Enzymes, Immobilized
  • Herbicides
  • Nitriles
  • Recombinant Proteins
  • Aminohydrolases
  • nitrilase