Comparative cytological responses of lung epithelial and pleural mesothelial cells following in vitro exposure to nanoscale SiO2

Toxicol In Vitro. 2013 Feb;27(1):24-33. doi: 10.1016/j.tiv.2012.09.002. Epub 2012 Sep 15.

Abstract

Due to unique surface chemistries and the ability to easily functionalize their surface, amorphous silica nanoparticles are being assimilated into medicinal and consumer products at an increasing rate. Subsequently, there is an emergent need to understand the interactions of these particulates with biological systems in an attempt to mitigate toxicity. The identification of susceptible or resistant cell types of the pulmonary system remains a critical step in the development of toxicity assessments for nanoparticle-based platforms. Specific to this study, the cellular responses of A549 lung epithelial and MeT-5A pleural mesothelial cell lines as a means of detecting nanoparticle-induced oxidative stress were examined. Basal expression and cellular antioxidant activity, including SOD, CAT, and GSH, were examined prior to H(2)O(2) and ~30 nm SiO(2) (0.01-100mg/L) exposures. Dose-response observations were made regarding oxidant production, cytotoxicity, GSH depletion and NRF2 transcription factor activation. Results indicated that, while both cell types exhibited susceptibility to H(2)O(2) and SiO(2)-induced oxidative stress and damage, the A549 cell line was relatively more resilient.

Publication types

  • Comparative Study

MeSH terms

  • Catalase / metabolism
  • Cell Line
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Epithelial Cells / drug effects*
  • Epithelial Cells / metabolism
  • Epithelium
  • Glutathione / metabolism
  • Humans
  • Lung / cytology
  • NF-E2-Related Factor 2 / metabolism
  • Nanoparticles / toxicity*
  • Silicon Dioxide / toxicity*
  • Superoxide Dismutase / metabolism

Substances

  • NF-E2-Related Factor 2
  • NFE2L2 protein, human
  • Silicon Dioxide
  • Catalase
  • Superoxide Dismutase
  • Glutathione