Role of aminopeptidases in the neuroendocrine control of blood pressure in experimental animals

Endocrinol Nutr. 2008 Oct;55(9):402-8. doi: 10.1016/S1575-0922(08)75077-0. Epub 2009 Jan 7.
[Article in English, Spanish]

Abstract

Control of blood pressure is partially accomplished by several proteolytic enzymes included in the renin-angiotensin system. These enzymes produce several peptides that form the active components of the system. Study of these enzymes is essential for a deep understanding of blood pressure control and could offer the possibility of controlling this system pharmacologically. Glutamylaminopeptidase converts angiotensin II into angiotensin III, which in turn is converted into angiotensin IV by an alanyl or arginyl aminopeptidase. Angiotensin I, through the action of aspartyl aminopeptidase, is converted into angiotensin 2-10, which may counteract the hypertensive actions of angiotensin II. Angiotensin III is the most active form of brain angiotensins and has a tonic stimulatory effect on blood pressure. Analysis of glutamyl-aminopeptidase inhibition has allowed the development of agents that effectively reduce blood pressure. Moreover, the development of aspartyl-aminopeptidase activators could be another goal, with a view to designing new antihypertensive agents. Our group has observed that unilateral lesions of the nigrostriatal pathway in rat brain produce simultaneous modifications in blood pressure and aminopeptidase activities, both in brain and plasma, curiously depending on the side of the lesion. This possible interaction among blood pressure, aminopeptidase activities and brain asymmetry, which could produce a differentiated neuroendocrine response on blood pressure control, may help us to understand the deep mechanism by which the brain is able to control blood pressure peripherally.