Fabrication of flexible and freestanding zinc chalcogenide single layers

Nat Commun. 2012:3:1057. doi: 10.1038/ncomms2066.

Abstract

Inorganic graphene analogues (IGAs) are a conceptually new class of materials with attractive applications in next-generation flexible and transparent nanodevices. However, their species are only limited to layered compounds, and the difficulty in extension to non-layered compounds hampers their widespread applicability. Here we report the fabrication of large-area freestanding single layers of non-layered ZnSe with four-atomic thickness, using a strategy involving a lamellar hybrid intermediate. Their surface distortion, revealed by means of synchrotron radiation X-ray absorption fine structure spectroscopy, is shown to give rise to a unique electronic structure and an excellent structural stability, thus determining an enhanced solar water splitting efficiency and photostability. The ZnSe single layers exhibit a photocurrent density of 2.14 mA cm(-2) at 0.72 V versus Ag/AgCl under 300 W Xe lamp irradiation, 195 times higher than that of bulk counterpart. This work opens the door for extending atomically thick IGAs to non-layered compounds and holds promise for a wealth of innovative applications.

Publication types

  • Research Support, Non-U.S. Gov't