Donor and acceptor dynamics of phosphorous doped ZnO nanorods with stable p-type conduction: photoluminescence and junction characteristics

J Nanosci Nanotechnol. 2012 Jul;12(7):5571-6. doi: 10.1166/jnn.2012.6224.

Abstract

We employed temperature-dependent photoluminescence (PL) to explain the donor and acceptor dynamics in phosphorus doped stable p-type P:ZnO nanorods. The room temperature PL revealed good crystalline and optical quality of P:ZnO nanorods. The 10 K PL spectrum exhibited a dominant acceptor bound exciton (A0X) or donor bound exciton (D0X) emission corresponding to p- and n-type P:ZnO nanorods, respectively. The donor-acceptor-pair (DAP) transitions exhibited different thermal dissociation energies for the p- and n-type P:ZnO nanorods, suggesting their different quenching channels. The quenching of the DAP transitions of the p-type ZnO:P nanorods was associated with the thermal dissociation of the DAP into free excitons, while the DAP transition of the n-type ZnO:P nanorods was quenched through the thermal dissociation of the shallow donor into free electrons. The rectifying behavior of a p-n homojunction diode formed by the p-type P:ZnO nanorods on n-type ZnO film confirmed the p-type conduction of the P:ZnO nanorods.

Publication types

  • Research Support, Non-U.S. Gov't