Nestedness and successional trajectories of macroinvertebrate assemblages in man-made wetlands

Oecologia. 2013 Feb;171(2):545-56. doi: 10.1007/s00442-012-2440-7. Epub 2012 Sep 11.

Abstract

Current successional models, primarily those based on floral succession, propose several distinct trajectories based on the integration of two key hypotheses from succession theory: convergence versus divergence in species composition among successional sites, and progression towards versus deviation from a desired reference state. We applied this framework to faunal succession, including differential colonization between active and passive dispersers, and the nested patterns generated as a consequence of this peculiarity. Nine man-made wetlands located in three different areas, from 0-3 years from wetland creation, were assessed. In addition, 91 wetlands distributed throughout the region were used as references for natural macroinvertebrate communities. We predicted the following: (1) highly nested structures in pioneering assemblages will decrease to lower mid-term values due to a shift from active pioneering taxa to passive disperser ones; (2) passive idiosyncratic taxa will elicit divergent successional trajectories among areas; (3) the divergent trajectories will provoke lower local and higher regional diversity values in the mid-term assemblages than in pioneer assemblages. Our results were largely congruent with hypotheses (1) and (2), diverging from the anticipated patterns only in the case of the temporary wetlands area. However, overall diversity trends based on hypothesis (3) did not follow the expected pattern. The divergent successional trajectories did not compensate for regional biodiversity losses that occurred as a consequence of pioneering colonizer decline over time. Consequently, we suggest reconsidering wetland construction for mitigation purposes within mid-term time frames (≤ 3 years). Wetlands may not offset, within this temporal scenario, regional biodiversity loss because the ecosystem may not support idiosyncratic taxa from natural wetlands.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Distribution*
  • Animals
  • Biodiversity
  • Conservation of Natural Resources
  • Invertebrates*
  • Population Dynamics
  • Wetlands*