[Regional heterogeneity of lake eutrophication effects in China]

Huan Jing Ke Xue. 2012 Jun;33(6):1777-83.
[Article in Chinese]

Abstract

Although biomass of algae (Chl-a) were in variant levels between different lake regions in China under the same nutrients conditions, it demonstrated that efficiencies of TN/TP used by algae had regional differences. In order to clarify the differences, curve estimation in SPSS was used to analyze the linear relationship between Ig Chl-a and Ig TN/lg TP. The slopes of these linear equations were identified as the efficiencies of TN/TP used by algae. The slopes of linear equations from Mengxin Plateau, Yungui Plateau, Northeast Mountain-Plain, lower reach of Yangtze River Plain and North Plain were 1.002, 0.817, 0.761, 0.545, 0.250, orderly. The efficiencies of TN used by algae ranged from the highest to the lowest were lower reach of Yangtze River Plain, Yungui Plateau, North Plain, Northeast Mountain-Plain, Mengxin Plateau, and the slopes of linear equations were 1.401, 1.058, 0.447, 0.239, 0. 099, respectively. Consequently, in Northeast Mountain-Plain, Mengxin Plateau the efficiencies of TP used by algae were higher than those of TN, and in Yangtze River Plain, Yungui Plateau, North Plain, the efficiencies of TN used by algae were higher than those of TP. On the other hand, in order to describe the effects of algae on transparency in different lakes, the relationships between Chl-a and SD were analyzed. The results showed that in Yungui Plateau the effect of algae on transparency was the most obvious as the variation of SD explained by Chl-a was the highest, and Northeast Mountain-Plain, Mengxin Plateau and North Plain followed. However, in lower reach of Yangtze River Plain, the relationship between Chl-a and SD was not significant.

Publication types

  • English Abstract
  • Research Support, Non-U.S. Gov't

MeSH terms

  • China
  • Environmental Monitoring / methods*
  • Eutrophication*
  • Lakes*
  • Nitrogen / analysis
  • Phosphorus / analysis
  • Water Pollutants, Chemical / analysis*

Substances

  • Water Pollutants, Chemical
  • Phosphorus
  • Nitrogen