Rapid separation of beryllium and lanthanide derivatives by capillary gas chromatography

J Sep Sci. 2012 Oct;35(20):2750-5. doi: 10.1002/jssc.201200537. Epub 2012 Sep 4.

Abstract

Previous studies describe derivatization of metal ions followed by analysis using gas chromatography, usually on packed columns. In many of these studies, stable and volatile derivatives were formed using fluorinated β-diketonate reagents. This paper extends previous work by investigating separations of the derivatives on small-diameter capillary gas chromatography columns and exploring on-fiber, solid-phase microextraction derivatization techniques for beryllium. The β-diketonate used for these studies was 1,1,1,2,2,6,6,7,7,7-decafluoro-3,5-heptanedione. Derivatization of lanthanides also required addition of a neutral donor, dibutyl sulfoxide, in addition to 1,1,1,2,2,6,6,7,7,7-decafluoro-3,5-heptanedione. Unoptimized separations on a 100-μm i.d. capillary column proved capable of rapid separations (within 15 min) of lanthanide derivatives that are adjacent to one another in the periodic table. Full-scan mass spectra were obtained from derivatives containing 5 ng of each lanthanide. Studies also developed a simple on-fiber solid-phase microextraction derivatization of beryllium. Beryllium could be analyzed in the presence of other alkali earth elements (Ba(II) and Sr(II)) without interference. Extension of the general approach was demonstrated for several additional elements (i.e. Cu(II), Cr(III), and Ga(III)).