The interplay of peptide sequence and local structure in TiO2 biomineralization

J Inorg Biochem. 2012 Oct:115:20-7. doi: 10.1016/j.jinorgbio.2012.05.011. Epub 2012 Jun 5.

Abstract

Using cyclic constrained TiO(2) binding peptides STB1 (CHKKPSKSC), RSTB1 (CHRRPSRSC) and linear peptide LSTB1 (AHKKPSKSA), it was shown that while affinity of the peptide to TiO(2) is essential to enable TiO(2) biomineralization, other factors such as biomineralization kinetics and peptide local structure need to be considered to predict biomineralization efficacy. Cyclic and linear TiO(2) binding peptides show significantly different biomineralization activities. Cyclic STB1 and RSTB1 could induce TiO(2) precipitation in the presence of titanium(IV)-bis-ammonium-lactato-dihydroxide (TiBALDH) precursor in water or tris buffer at pH 8. In contrast, linear LSTB1 was unable to mineralize TiO(2) under the same experimental conditions despite its high affinity to TiO(2) comparable with STB1 and/or RSTB1. LSTB1 being a flexible molecule could not render the stable condensation of TiBALDH precursor to form TiO(2) particles. However, in the presence of phosphate buffer ions, the structure of LSTB1 is stabilized, leading to efficient condensation of TiBALDH and TiO(2) particle formation. This study demonstrates that peptide-mediated TiO(2) mineralization is governed by a complicated interplay of peptide sequence, local structure, kinetics and the presence of mineralizing aider such as phosphate ions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Hydrogen-Ion Concentration
  • Kinetics
  • Peptides / chemistry*
  • Titanium / chemistry*

Substances

  • Peptides
  • titanium dioxide
  • Titanium