A specific multi-nutrient diet reduces Alzheimer-like pathology in young adult AβPPswe/PS1dE9 mice

J Alzheimers Dis. 2013;33(1):177-90. doi: 10.3233/JAD-2012-112039.

Abstract

Diet is an important lifestyle factor implicated in the etiology of Alzheimer's disease (AD), but so far it is not fully elucidated to which nutrients the suggested protective effect of diet can be attributed. Recent evidence obtained in the amyloid-β 1-42 (Aβ(42)) infusion model in rats has shown that a multi-nutrient intervention known as Fortasyn™ Connect (FC) may protect the central cholinergic system against Aβ(42)-induced toxicity. FC comprises the nutritional precursors and cofactors for membrane synthesis, viz. docosahexaenoic acid (DHA), eicosapentaenoic acid, uridine-mono-phosphate (UMP), choline, phospholipids, folic acid, vitamins B6, B12, C, E, and selenium. In order to investigate whether the combined administration of these nutrients may also affect AD-like pathology, we now evaluated the effects of the FC diet intervention in the transgenic AβPP(swe)/PS1(dE9) mouse model with endogenous Aβ production. In addition we evaluated the effects of diets containing the individual nutrients DHA and UMP and their combination in this model. Between the age of 3 and 6 months, FC diet decreased brain Aβ levels and amyloid plaque burden in the hippocampus of AβPP/PS1 mice. The FC diet also reduced ongoing disintegrative degeneration in the neocortex, as indicated by Amino Cupric Silver staining. Although all three DHA-containing diets were equally effective in changing brain fatty acid profiles, diets differentially affected amyloid-related measures, indicating that effects of DHA may depend on its dietary context. The current data, showing that dietary enrichment with FC reduces AD-like pathology in AβPP/PS1 mice, confirm and extend our previous findings in the Aβ(42) infusion model and favor the combined administration of relevant nutrients.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease / diet therapy*
  • Alzheimer Disease / genetics
  • Alzheimer Disease / pathology*
  • Amyloid beta-Protein Precursor / genetics*
  • Animals
  • Diet / methods*
  • Female
  • Food*
  • Humans
  • Mice
  • Mice, Inbred C3H
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Presenilin-1 / genetics*

Substances

  • Amyloid beta-Protein Precursor
  • Presenilin-1