OWL-based nanomasks for preparing graphene ribbons with sub-10 nm gaps

Nano Lett. 2012 Sep 12;12(9):4734-7. doi: 10.1021/nl302171z. Epub 2012 Aug 23.

Abstract

We report a simple and highly efficient method for creating graphene nanostructures with gaps that can be controlled on the sub-10 nm length scale by utilizing etch masks comprised of electrochemically synthesized multisegmented metal nanowires. This method involves depositing striped nanowires with Au and Ni segments on a graphene-coated substrate, chemically etching the Ni segments, and using a reactive ion etch to remove the graphene not protected by the remaining Au segments. Graphene nanoribbons with gaps as small as 6 nm are fabricated and characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. The high level of control afforded by electrochemical synthesis of the nanowires allows us to specify the dimensions of the nanoribbon, as well as the number, location, and size of nanogaps within the nanoribbon. In addition, the generality of this technique is demonstrated by creating silicon nanostructures with nanogaps.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Crystallization / methods*
  • Graphite / chemistry*
  • Macromolecular Substances / chemistry
  • Materials Testing
  • Metal Nanoparticles / chemistry*
  • Metal Nanoparticles / ultrastructure*
  • Molecular Conformation
  • Molecular Imprinting / methods*
  • Particle Size
  • Surface Properties

Substances

  • Macromolecular Substances
  • Graphite