Directing reprogramming to pluripotency by transcription factors

Curr Opin Genet Dev. 2012 Oct;22(5):416-22. doi: 10.1016/j.gde.2012.07.001. Epub 2012 Aug 3.

Abstract

The pluripotent state is governed by specifically expressed transcription factors forming a highly interconnected regulatory network in concert with more widely expressed transcription factors. The transcriptional network exhibits a hierarchical structure, with a small number of transcription factors playing an essential role in maintaining pluripotency and controlling the more numerous auxiliary transcription factors. When the set of master transcription factors comprising Oct4, Sox2, Klf4, and Myc is expressed ectopically in somatic cells, the transcriptional network is propelled to organize itself in such a way as to support a pluripotent state. These transcription factors play distinct but interdependent roles in remodeling gene expression by influencing the local chromatin status during reprogramming.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cellular Reprogramming*
  • Chromatin / metabolism
  • Gene Expression Regulation, Developmental
  • Gene Regulatory Networks
  • Humans
  • Kruppel-Like Factor 4
  • Kruppel-Like Transcription Factors / genetics
  • Kruppel-Like Transcription Factors / metabolism
  • Octamer Transcription Factor-3 / genetics
  • Octamer Transcription Factor-3 / metabolism
  • Pluripotent Stem Cells / metabolism*
  • Proto-Oncogene Proteins c-myc / genetics
  • Proto-Oncogene Proteins c-myc / metabolism
  • SOXB1 Transcription Factors / genetics
  • SOXB1 Transcription Factors / metabolism
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*

Substances

  • Chromatin
  • KLF4 protein, human
  • Kruppel-Like Factor 4
  • Kruppel-Like Transcription Factors
  • Octamer Transcription Factor-3
  • Proto-Oncogene Proteins c-myc
  • SOXB1 Transcription Factors
  • Transcription Factors